Ordering infinities

Joris van der Hoeven, CNRS, École polytechnique

Based on joint work with M. Aschenbrenner, V. Bagayoko, L. van den Dries

August 27, 2020 In honour of the 75th birthday of Maurice Pouzet
Back to the dark unordered ages

Georg Cantor
Georg Cantor

Cardinal numbers
Back to the dark unordered ages

Georg Cantor

Cardinal numbers

Ordinal numbers

0, 1, 2, ...
Georg Cantor

Cardinal numbers

Ordinal numbers

$0, 1, 2, \ldots, \omega$
Georg Cantor

Cardinal numbers

Ordinal numbers

$0, 1, 2, \ldots, \omega, \omega + 1, \ldots$
Georg Cantor

Cardinal numbers

Ordinal numbers

\[0, 1, 2, \ldots, \omega, \omega + 1, \ldots, \omega \cdot 2, \omega \cdot 2 + 1, \ldots \]
Georg Cantor

Cardinal numbers

Ordinal numbers

\[0, 1, 2, \ldots, \omega, \omega + 1, \ldots, \omega \cdot 2, \omega \cdot 2 + 1, \ldots, \omega^2\]
Georg Cantor

Cardinal numbers

$0, 1, 2, \ldots, \omega, \omega + 1, \ldots, \omega \cdot 2, \omega \cdot 2 + 1, \ldots, \omega^2, \ldots, \omega^3$
Georg Cantor

Cardinal numbers

\[0, 1, 2, \ldots, \omega, \omega + 1, \ldots, \omega \cdot 2, \omega \cdot 2 + 1, \ldots, \omega^2, \ldots, \omega^3, \ldots, \omega^\omega\]
Georg Cantor

Cardinal numbers

Ordinal numbers

\[0, 1, 2, \ldots, \omega, \omega + 1, \ldots, \omega \cdot 2, \omega \cdot 2 + 1, \ldots, \omega^2, \ldots, \omega^3, \ldots, \omega^\omega, \ldots, \mathbb{N}_1, \ldots \]
Georg Cantor

Cardinal numbers

$0, 1, 2, ..., \omega, \omega + 1, ..., \omega \cdot 2, \omega \cdot 2 + 1, ..., \omega^2, ..., \omega^3, ..., \omega^\omega, ..., N_1, ...$

Ordinal numbers

$\omega^\omega + 2 \cdot 3 + \omega^8 \cdot 7 + \omega \cdot 3 + 2 \cdot 9 + \omega^\omega + 1 \cdot 3 + \omega^7 \cdot 5 + \omega^8 + \omega^2 \cdot 111 + 2020$
Paul du Bois-Reymond
Paul du Bois-Reymond

Precursor of asymptotic calculus

\[\log x < \frac{x}{2} < \frac{x^2}{10} \quad (x \to \infty) \]
Paul du Bois-Reymond

Precursor of asymptotic calculus

\[
\log x < \frac{x}{2} < \frac{x^2}{10} \quad (x \to \infty)
\]

Diagonal argument

\[
\exists f, \quad x < e^x < e^{e^x} < e^{e^{e^x}} < \ldots < f
\]
Three intimately related topics...

(surreal) Numbers

Germs (in HARDY fields)

Transseries
Introduction

Germs
(in HARDY fields)

Transseri
HARDY fields
Let \mathcal{C}^1 be the ring of germs at $+\infty$ of continuously differentiable functions $(a, \infty) \to \mathbb{R} \ (a \in \mathbb{R})$.

We denote the germ at $+\infty$ of a function f also by f, relying on context.

Definition

A **HARDY field** is a subring of \mathcal{C}^1 which is a field that contains with each germ of a function f also the germ of its derivative f' (where f' might be defined on a smaller interval than f).

Examples

\mathbb{Q}, \mathbb{R}, $\mathbb{R}(x)$, $\mathbb{R}(x,e^x)$, $\mathbb{R}(x,e^x,\log x)$, $\mathbb{R}(x,e^{x^2},\text{erf} \ x)$
HARDY fields capture the somewhat vague notion of functions with “regular growth” at infinity (BOREL, DU BOIS-REYMOND, ...):

Let H be a HARDY field and $f \in H$. Then

$$f \neq 0 \implies \frac{1}{f} \in H \implies \begin{cases} f(x) > 0, \text{ eventually, or} \\ f(x) < 0, \text{ eventually.} \end{cases}$$

Consequently,

- H carries an ordering making H an ordered field:

 $$f > 0 \iff f(x) > 0 \text{ eventually;}$$

- f is eventually monotonic, and

 $$\lim_{x \to +\infty} f(x) \in \mathbb{R} \cup \{\pm \infty\}.$$
Transseries

(surreal) **Numbers**

Germs
(in HARDY fields)

Transseries
The field \mathbb{T} of transseries

$\mathbb{T} := \text{closure of } \mathbb{R} \cup \{x\} \text{ under } \exp, \log \text{ and infinite summation}$

$$e^x + e^{x/2} + e^{x/3} + \cdots - 3e^x + 5(\log x)\pi + 42 + x^{-1} + 2x^{-2} + 6x^{-3} + \cdots + e^{-x}$$
The field \mathbb{T} of transseries

$\mathbb{T} = \mathbb{R}[[\mathcal{M}]] :=$ closure of $\mathbb{R} \cup \{x\}$ under \exp, \log and infinite summation

$$\sum_{m} f_m \cdot m = e^x + e^{x/2} + \cdots - 3e^x + 5(\log x)\pi + 42 + x^{-1} + 2 x^{-2} + 6 x^{-3} + \cdots + e^{-x}$$

x: positive infinite indeterminate \hspace{1cm} f_m: coefficient \hspace{1cm} m: transmonomial

$\text{supp } f$: well-based subset of \mathcal{M}

disallow $x + \log x + \log \log x + \cdots$ and $e^{-x} + e^{-e^x} + e^{-e^{e^x}} + \cdots$
\(\mathbb{T} \) as an ordered differential field

- With the natural ordering of transseries (via the leading coefficient), \(\mathbb{T} \) is a *real closed ordered field* extension of \(\mathbb{R} \).
- Each \(f \in \mathbb{T} \) can be differentiated term by term (with \(x' = 1 \)):
 \[
 \left(\sum_{n=0}^{\infty} \frac{n! \, e^x}{x^n} \right)' = \sum_{n=0}^{\infty} n! \left(\frac{e^x}{x^n} \right)' = \sum_{n=0}^{\infty} n! \left(\frac{e^x}{x^n} - n \frac{e^x}{x^{n+1}} \right) = \frac{e^x}{x}
 \]
- This yields a *derivation* \(f \mapsto f' \) on the field \(\mathbb{T} \):
 \[
 (f + g)' = f' + g', \quad (f \cdot g)' = f' \cdot g + f \cdot g'
 \]
 Its constant field is \(\{ f \in \mathbb{T} : f' = 0 \} = \mathbb{R} \).
- Given \(f, g \in \mathbb{T} \), the equation \(y' + fy = g \) admits a solution \(y \neq 0 \) in \(\mathbb{T} \).
Surreal numbers

(surreal) Numbers

Germs (in HARDY fields)

Transseries
Class On of ordinal numbers

For any set L of ordinal numbers, there is a smallest ordinal number $\alpha > L$.
Class On of ordinal numbers

For any set L of ordinal numbers, there is a smallest ordinal number $\alpha > L$.

Class No of surreal numbers (CONWAY)

For any sets $L < R$ of surreal numbers, there is a simplest surreal number \{L|R\} such that $L < \{L|R\} < R$.
Class On of ordinal numbers

For any set L of ordinal numbers, there is a smallest ordinal number $\alpha > L$.

Class No of surreal numbers (CONWAY)

For any sets $L < R$ of surreal numbers, there is a simplest surreal number $\{L|R\}$ such that $L < \{L|R\} < R$.

We have $\text{On} \subseteq \text{No}$ by taking $R = \emptyset$:

\[
\begin{align*}
0 &= \{|\} \\
1 &= \{0|\} \\
2 &= \{0, 1|\} \\
\omega &= \{0, 1, 2, \ldots|\}
\end{align*}
\]
$0 = \{ | \}$
Surreal numbers

\[0 = \{|\} \]

\[-1 = \{|0\} \quad 1 = \{0|\} \]
Surreal numbers

0 = { | }

-1 = { | 0 }

-2 = { | -1, 0 } \quad -\frac{1}{2} = \{-1 | 0\} \quad \frac{1}{2} = \{ 0 | 1 \} \quad 2 = \{ 0, 1 | \}
Surreal numbers

\[0 = \{|\}\]

\[-1 = \{|0\}\]

\[-2 = \{|-1,0\}\]

\[-\frac{1}{2} = \{-1|0\}\]

\[1 = \{0|\}\]

\[2 = \{0,1|\}\]

\[-3\]

\[-1 \frac{1}{2}\]

\[-\frac{3}{4}\]

\[-\frac{1}{4}\]

\[\frac{1}{4}\]

\[\frac{3}{4}\]

\[1 \frac{1}{2}\]

\[3\]
Surreal numbers

$0 = \{|\}$

$-1 = \{|0\}$

$-2 = \{|-1,0\}$

$-3 = \{|...,-1,0\}$

$\omega = \{|...,-1,0\}$

$\frac{1}{2} = \{|-1|0\}$

$\frac{3}{4} = \{|-1|0\}$

$\frac{1}{4} = \{|-1|0\}$

$\frac{1}{2} = \{|0|1\}$

$\frac{1}{4} = \{|0|1\}$

$\frac{3}{4} = \{|0|1\}$

$\frac{1}{2} = \{|0,1|\}$

$2 = \{|0,1|\}$

$3 = \{|0,1|\}$

$\frac{1}{\omega} = \{|0,...,\frac{1}{2},1\}$

$\omega = \{|0,1,...|\}$
Surreal numbers

-1

-2
-3
-4

1

½

0

½

1

2

3

4

-ω

-ω + 1

-ω.2

0

-½

-1

-1½

-1¼

-1¾

-1⅛

-ω

-ω.2

-ω + 1

-ω + 1

0

1

2

3

4

ω

ω + 1

ω + 1
If \(x = \{x^L|x^R\} \) and \(y = \{y^L|y^R\} \), then

\[
x + y := \{x^L + y, x + y^L | x^R + y, x + y^R\}
\]

(Idea: we want \(x^L + y < x + y < x^R + y, \ldots \))
Definition

If \(x = \{x_L | x_R\}\) and \(y = \{y_L | y_R\}\), then

\[
x + y := \{x_L + y, x + y_L | x_R + y, x + y_R\}
\]

(Idea: we want \(x_L + y < x + y < x_R + y\), ...)

Definition

If \(x = \{x_L | x_R\}\) and \(y = \{y_L | y_R\}\), then

\[
x y := \{xy + x y - x y, \bar{x} y + x \bar{y} - x \bar{y} | xy + x \bar{y} - x \bar{y}, \bar{x} y + x y - \bar{x} y\}
\]

where \(x' \in x_L, x'' \in x_R, y' \in y_L, y'' \in y_R\)
Arithmetic operations

Definition

If \(x = \{ x^L | x^R \} \) and \(y = \{ y^L | y^R \} \), then

\[
x + y := \{ x^L + y, x + y^L | x^R + y, x + y^R \}
\]

(Idea: we want \(x^L + y < x + y < x^R + y \), ...)

Definition

If \(x = \{ x^L | x^R \} \) and \(y = \{ y^L | y^R \} \), then

\[
x y := \{ x y + x y - x y, \tilde{x} y + x \tilde{y} - x \tilde{y} | x y + x \tilde{y} - x \tilde{y}, \tilde{x} y + x \tilde{y} - x \tilde{y} \}
\]

where \(x' \in x_L, x'' \in x_R, y' \in y_L, y'' \in y_R \)

Theorem (CONWAY)

No is a real closed field.
In the 1980s, GONSHOR (based on ideas of KRUSKAL) defined an exponential function $\exp: \mathbb{N} \to \mathbb{N}^>0$ that extends $x \mapsto e^x$ on \mathbb{R}.

In 2006, BERARDUCCI and MANTOVA (using ideas of VDH and SCHMELING) defined a derivation ∂_{BM} on \mathbb{N} with

$$\ker \partial_{BM} = \mathbb{R}, \quad \partial_{BM}(\omega) = 1, \quad \partial_{BM}(\exp(f)) = \partial_{BM}(f) \cdot \exp(f) \text{ for } f \in \mathbb{N}.$$

In a certain technical sense, it is the simplest such derivation that satisfies some natural further conditions.

The BM-derivation on \mathbb{N} behaves in many ways like the derivation on \mathbb{T}, with $\omega > \mathbb{R}$ in the role of $x > \mathbb{R}$. For instance, $\partial_{BM}(\log \omega) = \frac{1}{\omega}$.
Towards a unified theory

- (surreal) Numbers
- Germs (in HARDY fields)
- Transseries
Towards a unified theory

(surreal) Numbers

Germs (in HARDY fields)

Transseries
Towards a unified theory

Numbers (surreal)

H-fields

Germs (in HARDY fields)

Transseries
Towards a unified theory

(surreal)

Numbers

Germs
(in HARDY fields)

H-fields

Hardy
Hausdorff
Hahn

Transseries
Let K be an ordered differential field with constant field $C = \{f \in K: f' = 0\}$.

We define

$f \leq g : \iff |f| \leq c|g|$ for some $c \in C^>0$ \hfill (f is dominated by g)

$f < g : \iff |f| \leq c|g|$ for all $c \in C^>0$ \hfill (f is negligible w.r.t. g)

$f \asymp g : \iff f \leq g \leq f$ \hfill (f is asymptotic to g)

$f \sim g : \iff f - g < g$ \hfill (f is equivalent to g)

Example

In \mathbb{T}: $0 < e^{-x} < x^{-10} < 1 < 100 < \log x < x^{1/10} < e^x \sim e^x + x < e^{e^x}$
Definition

We call K an **H-field** if

1. $f > C \implies f' > 0$;
2. $f \asymp 1 \implies f \sim c$ for some $c \in C$.

Examples

HARDY fields containing \mathbb{R}; ordered differential subfields of \mathbb{T} or \mathbb{N}_0 that contain \mathbb{R}.

\mathbb{T} admits further elementary properties in addition to being an H-field. It

- has **small derivation**, that is, $f < 1 \implies f' < 1$; and
- is **LIOUVILLE closed**, that is, it is real closed and for all f, g, there is some $y \neq 0$ with $y' + fy = g$.

We view \mathbb{T} model-theoretically as a structure with the primitives

$$0, \ 1, \ +, \ \times, \ \partial \text{ (derivation)}, \ \leq \text{ (ordering)}.$$

The elementary theory of \mathbb{T} is completely axiomatized by:

1. \mathbb{T} is a LIOUVILLE closed H-field with small derivation;
2. \mathbb{T} satisfies the intermediate value property for differential polynomials:

 Given $P \in \mathbb{T}[Y, Y', \ldots, Y^{(r)}]$ and $u < v$ in \mathbb{T} with $P(u)P(v) < 0$, there exists a $y \in \mathbb{T}$ with $u < y < v$ and $P(y) = 0$

In particular: the theory of \mathbb{T} is decidable.

We also prove a quantifier elimination result for \mathbb{T} in a natural expansion of the above language.
H-field elements as germs

(surreal) Numbers

H-fields

Germs
(in HARDY fields)

Transseries
H-field elements as germs

(surreal) Numbers

Germs (in HARDY fields)

H-fields

Transseries
Theorem (HARDY 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.
Theorem (HARDY 1910, BOURBAKI 1951)

Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Conjecture

Let H be a maximal HARDY field. Then

A. H satisfies the differential intermediate value property.
B. For countable subsets $A < B$ of H, there exists an $h \in H$ with $A < h < B$.
Any HARDY field has a smallest LIOUVILLE closed HARDY field extension.

Let H be a maximal HARDY field. Then

- H satisfies the differential intermediate value property.
- For countable subsets $A < B$ of H, there exists an $h \in H$ with $A < h < B$.

H is elementarily equivalent to \mathbb{T} as an ordered differential field.

Under CH, all maximal HARDY fields are isomorphic.
H-field elements as surreal numbers

(surreal) Numbers

H-fields

Germs (in HARDY fields)

Transseries
H-field elements as surreal numbers

(surreal) Numbers

H-fields

Germs
(in Hardy fields)

Transseries
Theorem (JEMS 2019)

Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into \mathbb{N}_o.
Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into \mathbb{No}.

Let κ be an uncountable cardinal. The field $\mathbb{No}(\kappa)$ of surreal numbers of length $<\kappa$ is an elementary submodel of \mathbb{No}.
Theorem (JEMS 2019)

Every H-field with small derivation and constant field \mathbb{R} can be embedded as an ordered differential field into No.

Theorem (JEMS 2019)

Let κ be an uncountable cardinal. The field $\text{No}(\kappa)$ of surreal numbers of length $<\kappa$ is an elementary submodel of No.

Corollary in progress

Under CH all maximal HARDY fields are isomorphic to $\text{No}(\omega_1)$.
H-field elements as transseries

(surreal) Numbers

H-fields

Germ (in HARDY fields)

Transseries
H-field elements as transseries

(surreal) Numbers

H-fields

Germ(s) (in HARDY fields)

Transseries
H-field elements as transseries

- Numbers (surreal)
- H-fields
- Germs (in HARDY fields)
- Transseries
Definition (VAN DER HOEVEN 2000, SCHMELING 2001)

A field $\mathbf{T} = \mathbb{R}[[M]]$ with $\text{log}: \mathbf{T}^\rightarrow \rightarrow \mathbf{T}$ is a field of transseries if …

A transserial derivation on \mathbf{T} is a derivation $\partial: \mathbf{T} \rightarrow \mathbf{T}$ such that …
Surreal numbers as transseries

Definition (Van der Hoeven 2000, Schmeling 2001)

A field $\mathbb{T} = \mathbb{R}[[M]]$ with $\log: \mathbb{T}^+ \to \mathbb{T}$ is a field of transseries if …

A transserial derivation on \mathbb{T} is a derivation $\partial: \mathbb{T} \to \mathbb{T}$ such that …

Theorem (Berarducci–Mantova, 2015)

\mathbb{N} is a field of transseries and ∂_{BM} is a transserial derivation.
Surreal numbers as transseries

Definition (Van der Hoeven 2000, Schmeling 2001)

A field \(T = \mathbb{R}[[M]] \) with \(\log: T^> \rightarrow T \) is a **field of transseries** if …

A **transserial derivation** on \(T \) is a derivation \(\partial: T \rightarrow T \) such that …

Theorem (Berarducci–Mantova, 2015)

\(\text{No} \) is a field of transseries and \(\partial_{\text{BM}} \) is a transserial derivation.

Corollary

Any H-field with constant field \(\mathbb{R} \) can be embedded in a field of transseries with a transserial derivation.
What next?

(surreal) Numbers

H-fields

Transseries

Gerns
(in HARDY fields)
What next?

(surreal) Numbers

Germs (in HARDY fields)

beyond H-fields

Transseries
What next?

(surreal) **Numbers**

= beyond H-fields

Germ

(in HARDY fields)

Transseries
Équations d'itération

\[\exp_\omega(x + 1) = \exp \exp_\omega x \]

→ Croissance plus rapide que \(e^x, e^{e^x}, e^{e^{e^x}}, \ldots \)

→ Kneser 1950 : il existe une solution réelle analytique \(\exp_\omega \)
Iterated exponentials and logarithms

\[\exp_\omega (x + 1) = \exp \exp_\omega x \]
\[\exp_{\omega^2} (x + 1) = \exp_\omega \exp_{\omega^2} x \]

\[\vdots \]

→ stronger growth than \(e^x, e^{e^x}, \ldots, \exp_\omega x, e^{\exp_\omega x}, \ldots, \exp_\omega \exp_\omega x, \ldots \)
Transseries not completely closed...

Iterated exponentials and logarithms

\[
\begin{align*}
\exp_\omega (x + 1) &= \exp \exp_\omega x \\
\exp_{\omega^2} (x + 1) &= \exp_\omega \exp_{\omega^2} x \\
\end{align*}
\]

→ stronger growth that \(e^x, e^{e^x}, \ldots, \exp_\omega x, e^{\exp_\omega x}, \ldots, \exp_\omega \exp_\omega x, \ldots \)

Functional equations

\[
f(x) = \sqrt{x} + e^{f(\log x)} = \sqrt{x} + e^{\sqrt{\log x} + e^{\sqrt{\log\log x} + \ldots}}
\]
Hyperlogarithms and hyperexponentials

\[
\begin{align*}
\exp_\omega(x + 1) &= \exp \exp_\omega x \\
\exp_{\omega^2}(x + 1) &= \exp_\omega \exp_{\omega^2} x \\
\vdots \\
\log_\omega \log x &= \log_\omega x - 1 \\
\log_{\omega^2} \log_\omega x &= \log_{\omega^2} x - 1 \\
\vdots
\end{align*}
\]
Hyperlogarithms and hyperexponentials

\[\exp_\omega(x + 1) = \exp \exp_\omega x \]
\[\exp_{\omega^2}(x + 1) = \exp_\omega \exp_{\omega^2} x \]
\[\vdots \]
\[\log_\omega \log x = \log_\omega x - 1 \]
\[\log_{\omega^2} \log_\omega x = \log_{\omega^2} x - 1 \]
\[\log_\omega x = \frac{1}{x \log x \log \log x \ldots} \]
\[\log_\alpha x = \int \prod_{\beta < \alpha} \frac{1}{\log_\beta x} \]
Hyperlogarithms and hyperexponentials

\[
\begin{align*}
\exp_\omega(x + 1) &= \exp \exp_\omega x \\
\exp_{\omega^2}(x + 1) &= \exp_\omega \exp_{\omega^2} x \\
&\vdots \\
\log_\omega \log x &= \log_\omega x - 1 \\
\log_{\omega^2} \log_\omega x &= \log_{\omega^2} x - 1 \\
&\vdots \\
\log_\omega x &= \frac{1}{x \log x \log \log x \ldots} \\
\log_\alpha x &= \int \prod_{\beta < \alpha} \frac{1}{\log_\beta x}
\end{align*}
\]

Nested hyperseries

Solutions de \(f(x) = \sqrt{x} + e^{f(\log x)} \):

\[f_0(x) \]
Hyperlogarithms and hyperexponentials

\[
\begin{align*}
\exp_\omega(x + 1) &= \exp \exp_\omega x \\
\exp_{\omega^2}(x + 1) &= \exp_\omega \exp_{\omega^2} x \\
&\vdots
\end{align*}
\]

\[
\begin{align*}
\log_\omega \log x &= \log_\omega x - 1 \\
\log_{\omega^2} \log_\omega x &= \log_{\omega^2} x - 1 \\
&\vdots
\end{align*}
\]

\[
\log_\omega x = \frac{1}{x \log x \log \log x \ldots}
\]

\[
\log_\alpha x = \int \prod_{\beta < \alpha} \frac{1}{\log_\beta x}
\]

Nested hyperseries

Solutions de \(f(x) = \sqrt{x} + e^{f(\log x)} \):

\[
f_{-1}(x) < f_0(x) < f_1(x)
\]
Hyperlogarithms and hyperexponentials

\[
\begin{align*}
\exp_\omega(x+1) &= \exp \exp_\omega x \\
\exp_\omega^2(x+1) &= \exp_\omega \exp_\omega^2 x \\
&\vdots \\
\log_\omega \log x &= \log_\omega x - 1 \\
\log_\omega^2 \log_\omega x &= \log_\omega^2 x - 1 \\
&\vdots \\
\log_\omega x &= \frac{1}{x \log x \log \log x \cdots} \\
\log_\alpha x &= \int \prod_{\beta < \alpha} \frac{1}{\log_\beta x}
\end{align*}
\]

Nested hyperseries

Solutions de \(f(x) = \sqrt{x} + e^{f(\log x)} \):

\[
\begin{align*}
f_{-2}(x) &< f_{-1}(x) < f_{-1/2}(x) < f_0(x) < f_{1/2}(x) < f_1(x) < f_2(x)
\end{align*}
\]
Hyperlogarithms and hyperexponentials

\[
\begin{align*}
\exp_\omega (x+1) &= \exp \exp_\omega x \\
\exp_{\omega^2} (x+1) &= \exp_\omega \exp_{\omega^2} x \\
\vdots
\end{align*}
\]

\[
\begin{align*}
\log_\omega \log x &= \log_\omega x - 1 \\
\log_{\omega^2} \log_\omega x &= \log_{\omega^2} x - 1 \\
\vdots
\end{align*}
\]

\[
\log_\omega x = \frac{1}{x \log x \log \log x \ldots}
\]

\[
\log_\alpha x = \int \prod_{\beta < \alpha} \frac{1}{\log_\beta x}
\]

Nested hyperseries

Solutions de \(f(x) = \sqrt{x} + e^{f(\log x)} \):

\[
\begin{align*}
\cdots < f_{-2}(x) < \cdots < f_{-1}(x) < \cdots < f_0(x) < \cdots < f_{1/2}(x) < \cdots < f_1(x) < \cdots < f_2(x) < \cdots
\end{align*}
\]
Conjecture (vdH 2006)

For an appropriate definition of the class Hy of hyperseries, we have $\mathbb{N}_0 \cong \text{Hy}$ for the map $\phi: \text{Hy} \rightarrow \mathbb{N}_0; f \mapsto f(\omega)$.
Conjecture (vdH 2006)

For an appropriate definition of the class Hy of hyperseries, we have $\mathbb{N}_0 \cong \text{Hy}$ for
the map $\phi: \text{Hy} \rightarrow \mathbb{N}_0; f \mapsto f(\omega)$.

Proof. By constructing a Conway bracket $\{\} \}$ on Hy.

Conjecture (vdH 2006)

For an appropriate definition of the class Hy of hyperseries, we have $\mathbb{N}_0 \cong \text{Hy}$ for the map $\phi: \text{Hy} \rightarrow \mathbb{N}_0; f \mapsto f(\omega)$.

Proof. By constructing a Conway bracket $\{\}$ on Hy.

Examples:

$\{x, e^x, e^{e^x}, \ldots\} = \exp_\omega x$

$\{\sqrt{x}, \sqrt{x} + e^{\sqrt{\log x}}, \ldots, \sqrt{x} + e^{2\sqrt{\log x}}, 2\sqrt{x}\} = f_0(x)$

$\{x^2, e^{\log^2 x}, e^{e^{\log^2 \log x}}, \ldots, e^{e^{e^{\sqrt{\log \log x}}}}, e^{e^{\sqrt{\log x}}}, e^{\sqrt{x}}\} = \exp_\omega \left(\log_\omega x + \frac{1}{2}\right)$
Thank you!

http://www.TEXMACS.org