Maurice’s Siblings

Many years of wonderful collaboration

Claude Laflamme
University of Calgary

Collaborators:
N. Sauer and R. Woodrow, University of Calgary
Definition (Siblings)

- Given two structures \mathcal{A} and \mathcal{B}, write:

 $\mathcal{A} \leq \mathcal{B}$ if there is a monomorphism (embedding) from \mathcal{A} to \mathcal{B},
 $\mathcal{A} \equiv \mathcal{B}$ if both $\mathcal{A} \leq \mathcal{B}$ and $\mathcal{B} \leq \mathcal{A}$.

In this case we say that \mathcal{A} and \mathcal{B} are *siblings*, or *equimorphic* (or even “twins” if they are non-isomorphic siblings).

- $\text{sib}(\mathcal{A})$ denotes the number of siblings of \mathcal{A}, up to isomorphism.
Example

1. $\text{sib}(A) = 1$: The following structures have a single sibling.
 - Sets (Cantor-Schröder-Bernstein).
 - Vector spaces over a fixed field.
 - Finitely generated abelian group.
 - Uncountable algebraically closed field.

2. $\text{sib}(A) = \aleph_0$: A ray (as a graph) has countably (infinite) siblings

3. $\text{sib}(A) = 2^{\aleph_0}$: The rationals have continuum siblings.

\[
\sum_{i \in \omega} \mathbb{Z} \chi_X(i)
\]
Conjecture (Thomassé - circa 2000)

If \(A \) is a countable relational structure, then \(\text{sib}(A) = 1, \aleph_0, \) or \(2^{\aleph_0} \).

Conjecture (Bonato - Tardif 06)

Any tree \(T \) has either infinitely many twins, or none. That is \(\text{sib}(T) = 1 \) or \(\text{sib}(T) \geq \aleph_0 \) (Tree Alternative Conjecture).

Conjecture (Tyomkim 09)

\(\text{sib}(T) \geq \aleph_0 \) for any locally finite tree \(T \) which has a non-surjective embedding, except for a ray.

Maurice

In the category of connected graphs with loops, the following structure has exactly 2 siblings:

```
· · ·
```

The only other (connected) sibling (up to isomorphism) is:

```
· · ·
```

As a relational structure, we find infinitely many siblings:

```
· · ·
```
Similarly in the category of *connected posets*, the one way infinite fence has exactly two siblings:

![Diagram of a one way infinite fence with two siblings]

And again as a relational structure, the above structure has infinitely many siblings.

Thomassé’s conjecture is open even for countable simple graph: there is no known example of a countable simple graph G where $\text{sib}(G)$ is not 1, \aleph_0, or 2^{\aleph_0}.
I: Back to Trees

Theorem (Tits 70)

Every automorphism of a tree preserves a vertex (a rotation), an edge (an inversion), or a two-way infinite path (a translation).

Theorem (Halin 73)

Let f be an embedding of a tree T into itself. Then either there is:

1. A fixed vertex; or
2. An edge reversed by f; or
3. A two-way infinite path preserved by f (and not the previous cases); or
4. A ray C preserved by f (and a vertex not in the range of f).

Furthermore, each case excludes the others.

Theorem (Halin 90)

Every rayless tree has a fixed vertex or a fixed edge which is preserved by every self-embedding.
Theorem (Bonato - Tardif 06)

The tree alternative conjecture holds for rayless trees.

Theorem (Tyomkin 09)

The tree alternative conjecture holds for rooted trees.

Theorem (Bonato - Bruhn - Diestel - Sprüssel 11)

The (graph) alternative conjecture holds for rayless graphs.
Definition (Scattered Tree)
A tree is scattered if it does not embed a subdivision of the binary tree.

Definition (End of a Tree)
An end of a tree is an equivalence class of “almost equal” rays.

Fact (Jung 69 - Polat 96)
A tree is scattered iff the space of ends is topologically scattered.

Maurice
Theorem (LPS ~15)

The tree alternative conjecture holds for scattered trees, and Tyomkyn’s conjecture holds for locally finite scattered trees.

Theorem (LPS ~15)

If a tree is scattered, then either there is one vertex, one edge, or a set of at most two ends preserved by every embedding.

Definition

- An end e is preserved *forward* (resp. *backward*) by an embedding f if there is some ray $C \in e$ such that $f[C] \subseteq C$ (resp. $C \subseteq f[C]$).
- An end e is *almost rigid* if it is preserved backward and forward by every embedding.
- A ray $C = \{x_0, \ldots, x_n, \ldots\}$ is *regular* if the number of pairwise non-equimorphic rooted trees T_{x_i} is finite (and an end is *regular* if it contains some regular ray).
Theorem (LPS ~15)

(i) If a scattered T does not contain a vertex or an edge preserved by every embedding, or an almost rigid end, and has a non-surjective embedding, then $\text{sib}(T) = \infty$ unless T is the one-way infinite path.

(ii) If T has an almost rigid end, then $\text{sib}(T) = 1$ if and only if $\text{sib}(T(\rightarrow x)) = 1$ for every vertex x, otherwise $\text{sib}(T) = \infty$.

(iii) If T has a non-regular and not almost rigid end preserved forward by every embedding then $\text{sib}(T) \geq 2^{\aleph_0}$.

Corollary (LPS ~16)

Let T be a scattered tree with $\text{sib}(T) < 2^{\aleph_0}$. Then there exists a vertex or an edge or a two-way infinite path or a one-way infinite path or an almost rigid end preserved by every embedding of T.
Theorem (Hamann ~16)

Let G be a monoid of embeddings of a tree T. Then either:

1. *There is a vertex, an edge or a set of at most two ends preserved by each member of G;*

2. *Or G contains a submonoid freely generated by two embeddings.*
Problem (How many siblings?)
II: Relational Structures – The Case of Chains

Theorem (LPW ~14)

- Thomassé’s Conjecture holds for (countable) chains, that is $\text{sib}(C) = 1, \aleph_0, \text{ or } 2^{\aleph_0}$,
- The (chain) alternative conjecture holds for all chains, that is $\text{sib}(C) = 1$ or $\text{sib}(C) = \infty$.

Maurice + Ivan Rival

Example

- \(sib(C) = 1 \) for any finite sum of ordinals or reverse ordinals.
- \(sib(\omega^* \cdot \omega) = \aleph_0 \) (and \(sib(\lambda^* \cdot \omega) = |\lambda| \)).

\[
\begin{array}{ccccccc}
\omega^* \cdot \omega & & & & & & \\
\downarrow & & & & & & \\
\omega^* & \omega^* & \omega^* & & & & \\
\downarrow & & & & & & \\
\mathcal{P} & \omega^* & \omega^* & \omega^* & & & \\
\end{array}
\]

- \(sib(\mathcal{Q}) = 2^{\aleph_0} \).

Corollary: All non-scattered countable chains have \(2^{\aleph_0} \) siblings.

Maurice + Eric Milner

Definition (Surordinal - Slater & Jullien)

A chain C is a **surordinal** if $1 + \omega^*$ does not embed in C.

Theorem (Scattered Chains with Few Siblings)

Let C be any chain and $\kappa < 2^{\aleph_0}$. Then the following are equivalent:

1. $\text{sib}(C) = \kappa$ and C is scattered;
2. $\kappa = 1$, or $\kappa \geq \aleph_0$ and C is a finite sum of surordinals and of reverse of surordinals, and if $C = \sum_{j<m} D_j$ is such a sum with m minimum then $\max\{\text{sib}(D_j) : j < m\} = \kappa$.

Maurice

P. Jullien, Contribution à l’étude des types d’ordres dispersés, Thèse Doctorat d’État, Université de Marseille, 27 juin 1968.
Theorem (Chains with Few Siblings)

Let C be any chain and $\kappa < 2^{\aleph_0}$. Then the following are equivalent:

1. $sib(C) = \kappa$.
2. $C = \sum_{i \in D} C_i$, where:
 - D is dense (singleton or infinite),
 - each C_i is scattered, $sib(C_i) = 1$ for all but finitely many $i \in D$,
 - $\max\{sib(C_i) : i \in D\} = \kappa$, and
 - every embedding $f : C \to C$ preserves each C_i.

Corollary (Alternative Conjecture for Chains – LPW *14)

$sib(C) = 1$ or $sib(C) \geq \aleph_0$ for any chain C.

Maurice

Hausdorff’s condensation and rank arguments.
Example (Dushnik and Miller)
It is possible to have $C = \sum_{i \in \mathbb{R}} C_i$, and $\text{sib}(C) = 1$.

Problem

Suppose that $C = \sum_{i \in D} C_i$, where:

- D is embedding rigid,
- each C_i is scattered, $\text{sib}(C_i) = 1$ for all but finitely many $i \in D$, and
- $\max\{\text{sib}(C_i) : i \in D\} = \kappa$.

Does it follow that $\text{sib}(C) = \kappa$?

Problem

What about partial orders?

Maurice

III: \aleph_0-categorical Relational Structure

Definition

R is *finitely partitionable* if there is a partition of the domain *E* of *R* into finitely many sets such that every permutation of *E* which preserves each block of the partition is an automorphism of *R*.

Theorem (Hodkinson & Macpherson 88)

A countable structure *R* in a finite language, or even infinite language if *R* is \aleph_0-categorical, is such that every structure with the same finite substructures is isomorphic to *R* if and only if *R* is finitely partitionable.

Theorem (LPSW 19)

- The alternative conjecture holds for any countable \aleph_0-categorical relational structure.
- Furthermore, $\text{sib}(R) = 1$ if and only if *R* is finitely partitionable.
Definition (Monomorphic Decomposition)

- Let R a relational structure on a set E. A subset E' of E is a *monomorphic part* of R if for every integer k and every pair A, A' of k-element subsets of E, the induced structures on A and A' are isomorphic whenever $A \backslash E' = A' \backslash E'$.

- A *monomorphic decomposition* of R is a partition \mathcal{P} of E into monomorphic parts.

- A monomorphic part which is maximal for inclusion is a *monomorphic component* of R.

Maurice + Djamila Oudrar + Nicolas Thiery ~13-15

The monomorphic components of R form a monomorphic decomposition of R of which every monomorphic decomposition of R is a refinement.
Remark

We may assume R is prehomogeneous.

Theorem (LPSW 19)

- **Case 1:** If R has a finite decomposition, then $\text{sib}(R) = 1$ or $\text{sib}(R) = 2^{\aleph_0}$.

 If one of the infinite component is not strongly indiscernible, then $\text{sib}(R) = 2^{\aleph_0}$; $\text{sib}(R) = 1$ otherwise.

- **Case 2:** If R has no finite decomposition, then $\text{sib}(R) = \infty$.

 If R has infinitely many infinite monomorphic components, then $\text{sib}(R) = 2^{\aleph_0}$.

Maurice + Frasnay + Fraïssé

Chainable structures, bichains, indicative sequences.
Problem

If R is a countable \aleph_0-categorical relational structure, then

$$\text{sib}(A) = 1, \aleph_0, \text{ or } 2^{\aleph_0}.$$

Moreover $\text{sib}(R) \leq \aleph_0$ if and only if R is cellular (Schmerl).

Remark

R is a countable \aleph_0-categorical relational structure iff $\text{Aut}(R)$ is oligomorphic.

Thus if a group G acts on a set E, call its closure \overline{G} the set of G-embeddings, and define a G-copy to be the image of E under some G-embedding, and finally a G-sibling is a subset of E containing a G-copy.

Theorem (LPSW 19)

The alternative conjecture holds for any closed oligomorphic group G acting on a countable set E.

ALGOS 2020

Maurice's Siblings

C. Laflamme 23 / 24
BONNE FÊTE MAURICE!