Remarks on Skula spaces

Robert Bonnet
Université de Savoie-Mont Blanc

The lecture is a part of a joint work with T. Banack and W. Kubiś:

Some references

Definition 1.

For a topological space X, we say that a family $\mathcal{U} := \{U_x : x \in X\}$ is a clopen selector if each U_x is a closed and open (clopen) subset of X and if \mathcal{U} satisfies:

1. $x \in U_x$ for every $x \in X$ and
2. the relation “$x < y$ if and only if $x \neq y$ and $U_x \subseteq U_y$” is irreflexive and transitive.

A Skula space X is a compact 0-dimensional space having a clopen selector (so X is a Priestley space).

If \mathcal{U} is a clopen selector of a Skula space X then:

- \mathcal{U} defines the topology on the compact space X.
- X is a (topologically) scattered space: every nonempty closed set F has an isolated point (for the induced topology).
- Every closed initial subset K of X (in particular $U_x \cap U_y$) is a finite union of U_z; and thus K is clopen.

So in some sense \mathcal{U} is a “semi-meet-semilattice”.
Definition 1.

For a topological space X, we say that a family $\mathcal{U} := \{U_x : x \in X\}$ is a **clopen selector** if each U_x is a closed and open (clopen) subset of X and if \mathcal{U} satisfies:

1. $x \in U_x$ for every $x \in X$ and
2. the relation “$x < y$ if and only if $x \neq y$ and $U_x \subseteq U_y$” is irreflexive and transitive.

A **Skula space** X is a compact 0-dimensional space having a clopen selector (so X is a Priestley space).

If \mathcal{U} is a clopen selector of a Skula space X then:

- \mathcal{U} define the topology on the compact space X.
- X is a (topologically) scattered space: every nonempty closed set F has an isolated point (for the induced topology).
- Every closed initial subset K of X (in particular $U_x \cap U_y$) is a finite union of U_z; and thus K is clopen.

So in some sense \mathcal{U} is a “semi-meet-semilattice”.

\[\square\]
Definition 1.

For a topological space X, we say that a family $\mathcal{U} := \{U_x : x \in X\}$ is a **clopen selector** if each U_x is a closed and open (clopen) subset of X and if \mathcal{U} satisfies:

1. $x \in U_x$ for every $x \in X$ and
2. The relation “$x < y$ if and only if $x \neq y$ and $U_x \subseteq U_y$” is irreflexive and transitive.

A **Skula space** X is a compact 0-dimensional space having a clopen selector (so X is a Priestley space).

If \mathcal{U} is a clopen selector of a Skula space X then:

- \mathcal{U} define the topology on the compact space X.
- X is a (topologically) scattered space: every nonempty closed set F has an isolated point (for the induced topology).
- Every closed initial subset K of X (in particular $U_x \cap U_y$) is a finite union of U_z; and thus K is clopen.

So in some sense \mathcal{U} is a “semi-meet-semilattice”.

Definition 1.

For a topological space X, we say that a family $\mathcal{U} := \{U_x : x \in X\}$ is a **clopen selector** if each U_x is a closed and open (clopen) subset of X and if \mathcal{U} satisfies:

1. $x \in U_x$ for every $x \in X$ and
2. the relation "$x < y$ if and only if $x \neq y$ and $U_x \subseteq U_y$" is irreflexive and transitive.

A **Skula space** X is a compact 0-dimensional space having a clopen selector (so X is a Priestley space).

If \mathcal{U} is a clopen selector of a Skula space X then:

- \mathcal{U} define the topology on the compact space X.
- X is a (topologically) scattered space: every nonempty closed set F has an isolated point (for the induced topology).
- Every closed initial subset K of X (in particular $U_x \cap U_y$) is a finite union of U_z; and thus K is clopen.

So in some sense \mathcal{U} is a "semi-meet-semilattice".
Definition 1.

For a topological space X, we say that a family $\mathcal{U} := \{U_x : x \in X\}$ is a
\textbf{clopen selector} if each U_x is a closed and open (clopen) subset of X and if \mathcal{U} satisfies:

1. $x \in U_x$ for every $x \in X$ and
2. the relation “$x < y$ if and only if $x \neq y$ and $U_x \subseteq U_y$” is irreflexive and transitive.

A \textbf{Skula space} X is a compact 0-dimensional space having a clopen selector (so X is a Priestley space).

If \mathcal{U} is a clopen selector of a Skula space X then:

- \mathcal{U} define the topology on the compact space X.
- X is a (topologically) scattered space: every nonempty closed set F has an isolated point (for the induced topology).
- Every closed initial subset K of X (in particular $U_x \cap U_y$) is a finite union of U_z; and thus K is clopen.

So in some sense \mathcal{U} is a “semi-meet-semilattice”.
Example. $\alpha + 1$ is an ordinal space and $U_\beta := [0, \beta]$ is clopen for any β.

Basic picture of a Skula space.
- A cyan \bullet point is minimal in X, i.e. $U_\bullet := \{x \in X : x \leq \bullet\} = \{\bullet\}$ and are isolated in X.
- The red \bullet (or \bullet, \bullet, \ldots) point is of level 1 and is the unique non-isolated point of $\{x \in X : x \leq \bullet\}$. So red \bullet (or \bullet, \bullet, \ldots) are elements of $D(X)$.
- The black \bullet point at the top is of level 2 and is the unique non-isolated point of $D(X)$.

We can construct such a space of all (finite or infinite) level.
Example. $\alpha + 1$ is an ordinal space and $U_\beta := [0, \beta]$ is clopen for any β.

Basic picture of a Skula space.
- A cyan \bullet point is minimal in X, i.e. $U_\bullet := \{x \in X : x \leq \bullet\} = \{\bullet\}$ and are isolated in X.
- The red \bullet (or \bullet, \bullet, ...) point is of level 1 and is the unique non-isolated point of $\{x \in X : x \leq \bullet\}$. So red \bullet (or \bullet, \bullet, ...) are elements of $D(X)$.
- The black \bullet point at the top is of level 2 and is the unique non-isolated point of $D(X)$.

We can construct such a space of all (finite or infinite) level.
Example. $\alpha + 1$ is an ordinal space and $U_\beta := [0, \beta]$ is clopen for any β.

Basic picture of a Skula space.
- A cyan \bullet point is minimal in X, i.e. $U_\bullet := \{x \in X : x \leq \bullet\} = \{\bullet\}$ and are isolated in X.
- The red \bullet (or \bullet, \cdot, \ldots) point is of level 1 and is the unique non-isolated point of $\{x \in X : x \leq \bullet\}$. So red \bullet (or \bullet, \cdot, \ldots) are elements of $D(X)$.
- The black \bullet point at the top is of level 2 and is the unique non-isolated point of $D(X)$.

We can construct such a space of all (finite or infinite) level.
Example. $\alpha + 1$ is an ordinal space and $U_\beta := [0, \beta]$ is clopen for any β.

Basic picture of a Skula space.
- A cyan \bullet point is minimal in X, i.e. $U_\bullet := \{x \in X : x \leq \bullet\} = \{\bullet\}$ and are isolated in X.
- The red \bullet (or \bullet, \bullet, \ldots) point is of level 1 and is the unique non-isolated point of $\{x \in X : x \leq \bullet\}$. So red \bullet (or \bullet, \bullet, \ldots) are elements of $D(X)$.
- The black \bullet point at the top is of level 2 and is the unique non-isolated point of $D(X)$.

We can construct such a space of all (finite or infinite) level.
Example. \(\alpha + 1 \) is an ordinal space and \(U_\beta := [0, \beta] \) is clopen for any \(\beta \).

Basic picture of a Skula space.
- A cyan \(\bullet \) point is minimal in \(X \), i.e. \(U_\bullet := \{ x \in X : x \leq \bullet \} = \{ \bullet \} \) and are isolated in \(X \).
- The red \(\bullet \) (or \(\bullet, \bullet, \ldots \)) point is of level 1 and is the unique non-isolated point of \(\{ x \in X : x \leq \bullet \} \). So red \(\bullet \) (or \(\bullet, \bullet, \ldots \)) are elements of \(D(X) \).
- The black \(\bullet \) point at the top is of level 2 and is the unique non-isolated point of \(D(X) \).

We can construct such a space of all (finite or infinite) level.
Example. $\alpha + 1$ is an ordinal space and $U_\beta := [0, \beta]$ is clopen for any β.

Basic picture of a Skula space.

- A cyan \bullet point is minimal in X, i.e. $U_\bullet := \{x \in X : x \leq \bullet\} = \{\bullet\}$ and are isolated in X.
- The red \bullet (or \bullet, \bullet, ...) point is of level 1 and is the unique non-isolated point of $\{x \in X : x \leq \bullet\}$. So red \bullet (or \bullet, \bullet, ...) are elements of $D(X)$.
- The black \bullet point at the top is of level 2 and is the unique non-isolated point of $D(X)$.

We can construct such a space of all (finite or infinite) level.
Example. Let P be a poset. Denote by $FS(P) \subseteq \{0, 1\}^P$ (resp. $IS(P) \subseteq \{0, 1\}^P$) the set of all final (resp. initial) subsets of P. Endow $FS(P)$ and $IS(P)$ of the pointwise topology. Identify $FS(P)$ and $IS(P)$ by $A \mapsto P \setminus A$.

Fact 2.

Let P be a partial ordering. The following are equivalent.

(i) P is a well-quasi-ordering (well-founded with no infinite antichain).

(ii) $\langle IS(P), \subseteq \rangle$ (i.e. $\langle FS(P), \supseteq \rangle$) is well-founded.

(iii) Any nonempty final subset K of P is finitely generated by a finite subset σ_K of P.

Proposition 3.

Let P be a well-quasi ordering and let $IS(P)$ endowed with the pointwise topology.

Then $IS(P)$ is a Skula space, and thus $IS(P)$ is a scattered space.
Example. Let P be a poset. Denote by $FS(P) \subseteq \{0, 1\}^P$ (resp. $IS(P) \subseteq \{0, 1\}^P$) the set of all final (resp. initial) subsets of P. Endow $FS(P)$ and $IS(P)$ of the pointwise topology. Identify $FS(P)$ and $IS(P)$ by $A \mapsto P \setminus A$.

Fact 2.

Let P be a partial ordering. The following are equivalent.

(i) P is a well-quasi-ordering (well-founded with no infinite antichain).
(ii) $\langle IS(P), \subseteq \rangle$ (i.e. $\langle FS(P), \supseteq \rangle$) is well-founded.
(iii) Any nonempty final subset K of P is finitely generated by a finite subset σ_K of P.

Proposition 3.

Let P be a well-quasi ordering and let $IS(P)$ endowed with the pointwise topology. Then $IS(P)$ is a Skula space, and thus $IS(P)$ is a scattered space.
Example. Let P be a poset. Denote by $\text{FS}(P) \subseteq \{0, 1\}^P$ (resp. $\text{IS}(P) \subseteq \{0, 1\}^P$) the set of all final (resp. initial) subsets of P. Endow $\text{FS}(P)$ and $\text{IS}(P)$ of the pointwise topology. Identify $\text{FS}(P)$ and $\text{IS}(P)$ by $A \mapsto P \setminus A$.

Fact 2.

Let P be a partial ordering. The following are equivalent.

(i) P is a well-quasi-ordering (well-founded with no infinite antichain).

(ii) $\langle \text{IS}(P), \subseteq \rangle$ (i.e. $\langle \text{FS}(P), \supseteq \rangle$) is well-founded.

(iii) Any nonempty final subset K of P is finitely generated by a finite subset σ_K of P. □

Proposition 3.

Let P be a well-quasi ordering and let $\text{IS}(P)$ endowed with the pointwise topology. Then $\text{IS}(P)$ is a Skula space, and thus $\text{IS}(P)$ is a scattered space. □
Invariants for a Skula space.

Denote by $D(Y)$ the set of non-isolated points of Y. Moreover set $D^0(X) = X$ and $D^\alpha(X) = D\left(\bigcap_{\beta < \alpha} D^\beta(X)\right)$.

Let \mathcal{U} be a clopen selector of a Skula space X. Then

1. \mathcal{U} is well-founded. Therefore $\langle X, \subseteq \rangle$ has a (well-founded) rank:

 $rk_{WF}X(x) = \sup\{rk_{WF}X(y) : y < x\}$.

 So $rk_{WF}X(x) = 0$ if and only if x is minimal, i.e. $U_x = \{x\}$. Moreover $rk_{WF}(X) := \sup_{x \in X} rk_{WF}X(x)$.

 By compactness $rk_{WF}(X) = \sup_x rk_{WF}X(x)$ is the last (ordered) derivative is nonempty and finite.

2. X is compact and scattered. Therefore X has a (Cantor-Bendixson) height:

 $ht_{CB}X(x) = \gamma$ iff $x \in D^{\gamma+1}(X) \setminus D^{\gamma}(X)$.

 By compactness $ht_{CB}(X) = \sup_x ht_{CB}X(x)$ is the last (topological) derivative $Endpt(X)$ is nonempty and finite.

We have $ht_{CB}X(x) \leq rk_{WF}X(x)$ for $x \in X$.
Invariants for a Skula space.

Denote by $D(Y)$ the set of non-isolated points of Y. Moreover set

$$D^0(X) = X$$
$$D^\alpha(X) = D\left(\bigcap_{\beta < \alpha} D^\beta(X)\right).$$

Let U be a clopen selector of a Skula space X. Then

1. U is well-founded. Therefore $\langle X, \subseteq \rangle$ has a (well-founded) rank :

$$rk_{WF}X(x) = \sup\{rk_{WF}X(y) : y < x\}.$$

So $rk_{WF}X(x) = 0$ if and only if x is minimal, i.e. $U_x = \{x\}$. Moreover

$$rk_{WF}(X) = \sup_{x \in X} rk_{WF}X(x).$$

By compactness $rk_{WF}(X) = \sup_x rk_{WF}X(x)$ is the last (ordered) derivative is nonempty and finite.

2. X is compact and scattered. Therefore X has a (Cantor-Bendixson) height :

$$ht_{CB}X(x) = \gamma \iff x \in D^{\gamma+1}(X) \setminus D^\gamma(X).$$

By compactness $ht_{CB}(X) = \sup_x ht_{CB}X(x)$ is the last (topological) derivative $Endpt(X)$ is nonempty and finite.

We have $ht_{CB}X(x) \leq rk_{WF}X(x)$ for $x \in X$.
Invariants for a Skula space.

Denote by $D(Y)$ the set of non-isolated points of Y. Moreover set $D^0(X) = X$ and $D^\alpha(X) = D(\bigcap_{\beta < \alpha} D^\beta(X))$.

Let \mathcal{U} be a clopen selector of a Skula space X. Then

1. \mathcal{U} is well-founded. Therefore $\langle X, \subseteq \rangle$ has a (well-founded) rank:
 $$\text{rk}_{\text{WF}}(x) = \sup \{ \text{rk}_{\text{WF}}(y) : y < x \}.$$
 So $\text{rk}_{\text{WF}}(x) = 0$ if and only if x is minimal, i.e. $U_x = \{x\}$. Moreover $\text{rk}_{\text{WF}}(X) := \sup_{x \in X} \text{rk}_{\text{WF}}(x)$.
 By compactness $\text{rk}_{\text{WF}}(X) = \sup_x \text{rk}_{\text{WF}}(X)$ is the last (ordered) derivative is nonempty and finite.

2. X is compact and scattered. Therefore X has a (Cantor-Bendixson) height:
 $$\text{ht}_{\text{CB}}(x) = \gamma \text{ iff } x \in D^{\gamma+1}(X) \setminus D^{\gamma}(X).$$
 By compactness $\text{ht}_{\text{CB}}(X) = \sup_x \text{ht}_{\text{CB}}(x)$ is the last (topological) derivative $\text{Endpt}(X)$ is nonempty and finite.

We have $\text{ht}_{\text{CB}}(x) \leq \text{rk}_{\text{WF}}(x)$ for $x \in X$.
Invariants for a Skula space.

Denote by $D(Y)$ the set of non-isolated points of Y. Moreover set

$$D^0(X) = X \text{ and } D^\alpha(X) = D\left(\bigcap_{\beta < \alpha} D^\beta(X)\right).$$

Let \mathcal{U} be a clopen selector of a Skula space X. Then

1. \mathcal{U} is well-founded. Therefore $\langle X, \subseteq \rangle$ has a (well-founded) rank:

$$\text{rk}_{\text{WF}}(X)(x) = \sup\{ \text{rk}_{\text{WF}}(X)(y) : y < x \}.$$

So $\text{rk}_{\text{WF}}(X)(x) = 0$ if and only if x is minimal, i.e. $U_x = \{x\}$. Moreover $\text{rk}_{\text{WF}}(X) := \sup_{x \in X} \text{rk}_{\text{WF}}(X)(x)$.

By compactness $\text{rk}_{\text{WF}}(X) = \sup_x \text{rk}_{\text{WF}}(X)(x)$ is the last (ordered) derivative is nonempty and finite.

2. X is compact and scattered. Therefore X has a (Cantor-Bendixson) height:

$$\text{ht}_{\text{CB}}(X)(x) = \gamma \text{ iff } x \in D^{\gamma+1}(X) \setminus D^\gamma(X).$$

By compactness $\text{ht}_{\text{CB}}(X) = \sup_x \text{ht}_{\text{CB}}(X)(x)$ is the last (topological) derivative $\text{Endpt}(X)$ is nonempty and finite.

We have $\text{ht}_{\text{CB}}(X)(x) \leq \text{rk}_{\text{WF}}(X)(x)$ for $x \in X$.
Hyperspace $H(X)$ of a Skula space X.

We define the Vietoris hyperspace $H(X)$ over a Skula space X as follows:

- $H(X)$ is the set of all nonempty closed initial subsets of $\langle X, \leq \rangle$. Therefore $\mathcal{U} \subseteq H(X)$.

- For $F, G \in H(X)$, we set $F \leq G$ if and only if $F \subseteq G$.

- The topology on $H(X)$ is the topology generated by the sets

 $$U^+ := \{ K \in H(X) : K \subseteq U \}$$

 declared to be clopen where U is any clopen initial subset in X.

So $V^- := \{ K \in H(X) : K \cap V \neq \emptyset \}$ is clopen in $H(X)$ if V is clopen final in X.

Theorem 4.

Let X be a Skula space. Then $H(X)$ is a Skula space.

Main order property ($A, B \in H(X)$):

- $H(X)$ is a continuous join-semilattice where $A \vee B := A \cup B$.
Hyperspace $H(X)$ of a Skula space X.

We define the Vietoris hyperspace $H(X)$ over a Skula space X as follows:

- $H(X)$ is the set of all nonempty closed initial subsets of $\langle X, \leq \rangle$. Therefore $\mathcal{U} \subseteq H(X)$.

- For $F, G \in H(X)$, we set $F \leq G$ if and only if $F \subseteq G$.

- The topology on $H(X)$ is the topology generated by the sets
 \[U^+ := \{ K \in H(X) : K \subseteq U \} \]
 declared to be clopen where U is any clopen initial subset in X.

 So $V^- := \{ K \in H(X) : K \cap V \neq \emptyset \}$ is clopen in $H(X)$ if V is clopen final in X.

Theorem 4.

Let X be a Skula space. Then $H(X)$ is a Skula space.

Main order property ($A, B \in H(X)$):

- $H(X)$ is a continuous join-semilattice where $A \lor B := A \cup B$.
Hyperspace $H(X)$ of a Skula space X.

We define the Vietoris hyperspace $H(X)$ over a Skula space X as follows:

- $H(X)$ is the set of all nonempty closed initial subsets of $⟨X, ≤⟩$. Therefore $U ⊆ H(X)$.
- For $F, G ∈ H(X)$, we set $F ≤ G$ if and only if $F ⊆ G$.
- The topology on $H(X)$ is the topology generated by the sets $U^+ := \{K ∈ H(X): K ⊆ U\}$
 declared to be clopen where U is any clopen initial subset in X.

So $V^- := \{K ∈ H(X): K ∩ V ≠ ∅\}$ is clopen in $H(X)$ if V is clopen final in X.

Theorem 4.

Let X be a Skula space. Then $H(X)$ is a Skula space.

Main order property ($A, B ∈ H(X)$):

- $H(X)$ is a continuous join-semilattice where $A ∨ B := A ∪ B$.
A space \(X \) is canonically Skula if \(X \) has a clopen selector
\[\mathcal{U} := \{ U_x : x \in X \} \]
such that for \(x \in X \)
\[D^{\alpha_x}(U_x) = \{ x \} \]
for some \(\alpha_x \) and \(\mathcal{U} \) is called a canonical clopen selector.

Theorem 5.

Let \(X \) be a canonical Skula space. Then

1. \(r_{WF}(x) = h_{CB}(x) (= \alpha_x) \) for \(x \in X \).
2. \(H(X) \) is canonically Skula.

Let \(P \) be a well-quasi-ordering (wqo). We have seen that \(IS(P) \), with the pointwise topology, is a Skula space.

Main Question 6.

1. Let \(P \) be a well-quasi-ordering (w.q.o.). Is \(IS(P) \) canonically Skula?
2. Let \(P \) be a better-quasi-ordering (b.q.o.). Is \(IS(P) \) canonically Skula?
(For b.q.o. see Nash-Williams.)
Canonical Skula spaces

A space \(X \) is canonically Skula if \(X \) has a clopen selector
\[\mathcal{U} := \{ U_x : x \in X \} \]
such that for \(x \in X \)
\[D^{\alpha_x}(U_x) = \{ x \} \]
for some \(\alpha_x \) and \(\mathcal{U} \) is called a canonical clopen selector.

Theorem 5.

Let \(X \) be a canonical Skula space. Then

1. \(\text{rk}_{WF}(x) = \text{ht}_{CB}(x) (= \alpha_x) \) for \(x \in X \).
2. \(H(X) \) is canonically Skula.

Let \(P \) be a well-quasi-ordering (wqo). We have seen that \(\text{IS}(P) \), with the pointwise topology, is a Skula space.

Main Question 6.

1. Let \(P \) be a well-quasi-ordering (w.q.o.). Is \(\text{IS}(P) \) canonically Skula?
2. Let \(P \) be a better-quasi-ordering (b.q.o.). Is \(\text{IS}(P) \) canonically Skula?
(For b.q.o. see Nash-Williams.)
Canonical Skula spaces

A space X is canonically Skula if X has a clopen selector
$\mathcal{U} := \{ U_x : x \in X \}$ such that for $x \in X$ $D^{\alpha_x}(U_x) = \{ x \}$ for some α_x and \mathcal{U} is called a canonical clopen selector.

Theorem 5.

Let X be a canonical Skula space. Then

1. $rk_{WF_X}(x) = ht_{CB_X}(x) (= \alpha_x)$ for $x \in X$.
2. $H(X)$ is canonically Skula.

Let P be a well-quasi-ordering (wqo). We have seen that $IS(P)$, with the pointwise topology, is a Skula space.

Main Question 6.

1. Let P be a well-quasi-ordering (w.q.o.). Is $IS(P)$ canonically Skula?
2. Let P be a better-quasi-ordering (b.q.o.). Is $IS(P)$ canonically Skula?

(For b.q.o. see Nash-Williams.)
A computation of height and rank on canonical Skula space.

Proposition 7. Let $\mathcal{U} := \{U_x : x \in X\}$ be a canonical selector for X and let $x \in X$ (so $\mathcal{U} \subseteq H(X)$). Then

$$\text{rk}_{WF}(U_x) = \text{rk}_{WF}(x) = \text{ht}_{CB}(x) = \text{ht}_{CB}(U_x)$$

and

1. If $\text{rk}_{WF}(x) = 0$ then $\text{ht}_{CB}(H(X))(U_x) = 0$.
2. If $\text{rk}_{WF}(x) = 1$ then $\text{ht}_{CB}(H(X))(U_x) = 1$.
3. If $\text{rk}_{WF}(x) = 1+\alpha \geq 2$ then $\text{ht}_{CB}(H(X))(U_x) = \omega^\alpha$.

Application. Let $U_\sigma := \bigcup_{x \in \sigma} U_x$ where $\sigma = \{x_0, x_1, x_2, x_3, x_4, x_5, x_6, x_7\}$ is an antichain of X satisfying

$$
\begin{align*}
\text{ht}_{CB}(x_0) &= 0 \\
\text{ht}_{CB}(x_1) &= 1 = \text{ht}_{CB}(x_2) \\
\text{ht}_{CB}(x_3) &= 2 \\
\text{ht}_{CB}(x_4) &= 10 = \text{ht}_{CB}(x_5) \\
\text{ht}_{CB}(x_6) &= \omega + 7 \\
\text{ht}_{CB}(x_7) &= 3.
\end{align*}
$$

By Proposition 7 and a theorem of Telgàsky, we have:

$$\text{ht}_{CB}(H(X))(U_\sigma) = \omega^{\omega+7} + \omega^9 \cdot 2 + \omega^2 + \omega + 2.$$
Thanks