Unstable graphs and packing into fifth power

Mohamed Y. Sayar, Louleb Tarak, Mohammad Alzohairi

ALGOS 2020

August 2020
summary

1. Definitions and results
2. Characterisation of the unstable graphs
3. Packing of an unstable graph into it’s fifth power
All graphs considered in this paper are finite, undirected, without loops or multiple edges.
All graphs considered in this paper are finite, undirected, without loops or multiple edges.

For a graph G, we will use $V,G), and $E,G)$, to denote its vertex and edge sets respectively.
All graphs considered in this paper are finite, undirected, without loops or multiple edges.

For a graph G, we will use $V(G)$, and $E(G)$, to denote its vertex and edge sets respectively.

The k–th power G^k of a graph G is the graph obtained from G by adding an edge between all pairs of vertices of G with distance at most k.
Packing of graphs

Definition

Let G_1, \ldots, G_k be a k graphs of order n. We say that there is a packing of G_1, \ldots, G_k (into the complete graph K_n) if there exist injections $\alpha_i : V(G_i) \rightarrow V(K_n)$, $i = 1, \ldots, k$, such that $\alpha_i^*(E(G_i)) \cap \alpha_j^*(E(G_j)) = \emptyset$ for $i \neq j$, where the map $\alpha_i^* : E(G_i) \rightarrow E(K_n)$ is the one induced by α_i.

Example

Figure – A packing of two copies of $P_4 \cup P_3$ into K_7.
Packing of graphs

Definition

Let G_1, \ldots, G_k be a k graphs of order n. We say that there is a packing of G_1, \ldots, G_k (into the complete graph K_n) if there exist injections $\alpha_i : V(G_i) \longrightarrow V(K_n), i = 1, \ldots, k$, such that $\alpha_i^*(E(G_i)) \cap \alpha_j^*(E(G_j)) = \emptyset$ for $i \neq j$, where the map $\alpha_i^* : E(G_i) \longrightarrow E(K_n)$ is the one induced by α_i.

Example

\[\text{Figure} \] – A packing of two copies of $P_4 \cup P_3$ into K_7.
Unstable graphs

Indecomposable graphs

In a graph G, a subset M of the vertex set V is a module (or interval, clan) of G if every vertex outside M is adjacent to all or none of M. The empty set, the singleton sets, and the full set of vertices are trivial modules. A graph is indecomposable (or prime) if all its modules are trivial. In the opposite case, we will say that G is decomposable.
Unstable graphs

Indecomposable graphs

In a graph G, a subset M of the vertex set V is a module (or interval, clan) of G if every vertex outside M is adjacent to all or none of M. The empty set, the singleton sets, and the full set of vertices are trivial modules. A graph is indecomposable (or prime) if all its modules are trivial. In the opposite case, we will say that G is decomposable.

Unstable graphs

Let G be an indecomposable graph. We say that $e \in E$ is removable edge if $G - e$ is indecomposable. The graph G is said to be unstable if it has no removable edges. Hence G is unstable if the removal of any edge $e \in E$ creates a nontrivial module in $G - e$.
Main result

Theorem

Let G be an unstable graph. Then there exists a 2-placement σ of G such that $\sigma(G) \subseteq G^5$.
Definitions and notations

\[\text{Leaf}(G) = \{ x \in V, \ x \text{ is a leaf} \}. \]
Definitions and notations

Leaf(\(G\)) = \(\{x \in V, x \text{ is a leaf}\}\).

If \(x\) is a leaf, then the unique edge \(e\) incident with \(x\) is called pendant edge.
Definitions and notations

Leaf\((G) = \{ x \in V, x \text{ is a leaf}\}.

If \(x\) is a leaf, then the unique edge \(e\) incident with \(x\) is called pendant edge.

An edge \(e\) is a bridge if \(G - e\) is disconnected graph, otherwise, \(e\) is a non-bridge. A bridge is said to be proper if it is not a pendant edge.
Definitions and notations

\[\text{Leaf}(G) = \{x \in V, x \text{ is a leaf}\}. \]

If \(x \) is a leaf, then the unique edge \(e \) incident with \(x \) is called pendant edge.

An edge \(e \) is a bridge if \(G - e \) is disconnected graph, otherwise, \(e \) is a non-bridge. A bridge is said to be proper if it is not a pendant edge.

A vertex \(x \) is an island if it is incident with bridges only.
Definitions and notations

Leaf(G) = \{x \in V, x \text{ is a leaf}\}.

If x is a leaf, then the unique edge e incident with x is called pendant edge.

An edge e is a bridge if G – e is disconnected graph, otherwise, e is a non-bridge. A bridge is said to be proper if is not a pendant edge.

A vertex x is an island if it is incident with bridges only.

Nob(G) = \{e \in E, e \text{ is not a bridge}\}

Isl(G) = \{x \in V, x \text{ is an island}\}
Let G be an indecomposable graph. We say that $x \in V(G)$ is an \textit{inside vertex}, if there exists a non-bridge $e = xy \in Nob(G)$ such that $x \in X$ for a nontrivial module X of $G - e$. On the other hand, if there exists a non-bridge $e = xy \in Nob(G)$ such that $x \notin X$ for a nontrivial module X of G, then x is called an \textit{outside vertex}.
Let G be an indecomposable graph. We say that $x \in V(G)$ is an *inside vertex*, if there exists a non-bridge $e = xy \in Nob(G)$ such that $x \in X$ for a nontrivial module X of $G - e$. On the other hand, if there exists a non-bridge $e = xy \in Nob(G)$ such that $x \notin X$ for a nontrivial module X of G, then x is called an *outside vertex*.

$$Out(G) = \{ x \in V ; x \text{ is an outside vertex} \}.$$
$$Ins(G) = \{ x \in V ; x \text{ is an inside vertex} \}.$$
Definitions and notations

Pendant component

Let us call a subgraph H a *pendant component* of a graph G if H is a connected component of a graph G', which is obtained by removing from G all its proper bridges. If G is its pendant component, then it is called a pendant graph. In this case, G has no proper bridges.
Definitions and notations

Pendant component

Let us call a subgraph H a pendant component of a graph G if H is a connected component of a graph G', which is obtained by removing from G all its proper bridges. If G is its pendant component, then it is called a pendant graph. In this case, G has no proper bridges.

$B_{IO} -$ graph

We call a $B_{IO} -$ graph a bipartite indecomposable graph G of order $n \geq 5$, with a bipartition $\{I, O\}$ such that for all $y \in I$ and for all $k -$ subset X_k of $N_G(y)$, $1 \leq k \leq d_G(y) - 1$, there exists a vertex $v_k \in I \setminus \{y\}$ such that $N_G(v_k) = X_k$
Definitions and notations

Example

Figure – A B_{10} – graph with 10 vertices.
Definitions and notations

Example

![Figure - A B_{IO} graph with 10 vertices.](image)

Lemma 1

Let G be a B_{IO} graph. Then G is unstable.
Lemmas

Lemma 2

Let G be a $B_{IO} - graph$ and $e = xy \in E(G)$ be a no proper bridge, such that $x \in O$ and $y \in I$. Then, $x \in Out(G)$ and either $y \in Leaf(G)$ or $y \in Ins(G)$.
Lemmas

Lemma.2
Let G be a $B_{IO} - graph$ and $e = xy \in E(G)$ be a no proper bridge, such that $x \in O$ and $y \in I$. Then, $x \in \text{Out}(G)$ and either $y \in \text{Leaf}(G)$ or $y \in \text{Ins}(G)$.

Lemma.3
Let G be a pendant graph. If G is unstable, then G is a $B_{IO} - graph$.
Lemmas

Lemma.2
Let G be a B_{IO} graph and $e = xy \in E(G)$ be a no proper bridge, such that $x \in O$ and $y \in I$. Then, $x \in Out(G)$ and either $y \in Leaf(G)$ or $y \in Ins(G)$.

Lemma.3
Let G be a pendant graph. If G is unstable, then G is a B_{IO} graph.

Theorem
Let G be an indecomposable graph. Then G is unstable if and only if each pendant component of G with at least two vertices is either a B_{IO} graph or an edge.
Definitions and notations

The partition \mathcal{P}

Consider an unstable graph G. We denote by C_1, C_2, \ldots, C_r, $r \geq 1$, the pendant components of G such that $|C_i| \geq 5$. Given an integer $j \in \{1, \ldots, r\}$, we define a partition $\mathcal{P} = \{X_1, X_2, \ldots, X_p\}$ on the vertex set of $\text{Out}(C_j)$, such that:

1. for all $i \in \{1, \ldots, p\}$, $|X_i| \in \{2, 3\}$,
2. if $|X_i| = 2$ there exists a vertex $y \in \text{Ins}(C_j)$ such that $X_i \subseteq N_{C_j}(y)$,
3. if $|X_i| = 3$ there exist two vertices $y, z \in \text{Ins}(G)$ such that $X_i \subseteq N_{C_j}(y) \cup N_{C_j}(z)$ (See Figure. 2).
Definitions and notations

Example

\begin{figure}
\centering
\includegraphics[width=\textwidth]{example_partition.png}
\caption{An example of a partition $\mathcal{P}(O)$.}
\end{figure}
Definitions and notations

Let $x \in C_j$, $1 \leq j \leq r$. We say that x is a \textit{representative vertex} of G if x is incident with a proper bridge. We denote by

$$R(G) = \{ x \in V(G), x \text{ is a representative vertex} \}$$

Note that $R(G) \subseteq \text{Out}(G)$.
Definitions and notations

Let $x \in C_j$, $1 \leq j \leq r$. We say that x is a representative vertex of G if x is incident with a proper bridge. We denote by

$$R(G) = \{x \in V(G), x \text{ is a representative vertex}\}$$

Note that $R(G) \subseteq Out(G)$.

Let $V' = R(G) \cup Isl(G)$. The graph $G' = G[V']$ is called the representative graph of G. Note that

1. Each connected component of G' is a tree.
2. Let T_1, T_2, \ldots, T_q, $q \geq 1$, be the connected components of G'. Then for all $i \in \{1, 2, \ldots, r\}$ and $j \in \{1, 2, \ldots, q\}$, $|C_i \cap T_j| \leq 1$.
Lemmas

Lemma 1
Let G be a pendant graph of order $n \geq 5$. If G is unstable, then there exists a 2 – placement σ_C on $V(G)$ such that $\sigma_C(G) \subseteq G^5$.
Lemmas

Lemma 1
Let G be a pendant graph of order $n \geq 5$. If G is unstable, then there exists a 2−placement σ_C on $V(G)$ such that $\sigma_C(G) \subseteq G^5$.

Lemma 2
Given an unstable graph G of order $n \geq 5$, consider G' its representative graph. If G' is an edge, then there exists a 2−placement σ_{S_2} on $V(G)$ such that $\sigma_{S_2}(G) \subseteq G^5$.
Lemma.3

Given an unstable graph G of order $n \geq 5$, consider G' it's representative graph. If G' is a star S_p, $p \geq 3$, then there exists a 2-placement σ_{S_2} on $V(G)$ such that $\sigma_{S_2}(G) \subseteq G^5$.
Lemmas

Lemma 3
Given an unstable graph G of order $n \geq 5$, consider G' its representative graph. If G' is a star S_p, $p \geq 3$, then there exists a 2-placement σ_{S_2} on $V(G)$ such that $\sigma_{S_2}(G) \subseteq G^5$.

Lemma 4
Given an unstable graph G. Consider G' its representative graph. If G' is a tree U such that $\text{Diam}(U) \geq 3$, then there exists a 2-placement σ_U on $V(G)$ such that $\sigma_U(G) \subseteq G^5$.
Idea of proof

Claim 1

If each pendant component of G is either a singleton or an edge, then there exists a 2-placement σ such that $\sigma(G) \subseteq G^3$.
Idea of proof

Claim 1
If each pendant component of G is either a singleton or an edge, then there exists a 2-placement σ such that $\sigma(G) \subseteq G^3$.

Claim 2
If G is a pendant graph, then there exists a 2-placement σ such that $\sigma(G) \subseteq G^5$.
Idea of proof

Claim 1
If each pendant component of G is either a singleton or an edge, then there exists a 2–placement $σ$ such that $σ(G) ⊆ G^3$.

Claim 2
If G is a pendant graph, then there exists a 2–placement $σ$ such that $σ(G) ⊆ G^5$.

Now, we shall assume that we can apply neither Claim 1 nor Claim 2 to the graph G. Under this assumption, we will define a 2–placement $σ$ on $V(G)$ such that $σ(G) ⊆ G^5$.
Thank You !